Ćwiczenie nr 13 – Symulacja dynamiczna

Wprowadzenie

Symulacja dynamiczna jest narzędziem umożliwiającym analizę pracy mechanizmów z uwzględnieniem działających sił (w tym siły ciężkości) i momentów na poszczególne elementy zespołu. Możliwa jest analiza zmian położenia poszczególnych elementów w funkcji czasu (położenie, prędkość, przyśpieszenie), jak również analiza MES poszczególnych elementów zespołu z uwzględnieniem powstających w czasie pracy mechanizmu obciążeń.

Etapy symulacji dynamicznej

Moduł symulacji dynamicznej jest dostępny w środowisku zespołu w zakładce Środowiska (rys.1)

Plik	Złóż	Projekt	Model 3D	Szkic	Opisz	Sprawdź	Narzędzia	Zarządzanie	Widok	Środowiska	Rozpod	cznij Wsp	ółpracuj	Elektromech	aniczne Sym	lacja dynamiczna	•
Wstaw	połączen	ie 🍄 Stat	ekształć wiąza tus mechanizi	nia ↓ mu Si	iła Mon	C nent obrotowy	Grapher wyjściowy	₩ Ruch dyr ửử Nieznana ∼ Ślad	namiczny a siła	📾 Opublikuj D Publikuj w	film studio	Ustawienia symulacji	Odtwarzacz symulacji	fх ^{Parametry}	Eksportuj do M	S Zakończ Symulacja dynar	miczna
		Połączenie			We	zytaj		Wyniki		Animacja	а	Z	arządzanie	-	Analiza napręż	ń Zakończ	
Model	× +						QE										
Zespół	Modelo	wanie <u>Syr</u>	nulacja dynami	czna													

Rys. 1. Karta Symulacji dynamicznej

Zanim ten moduł zostanie uruchomiony należy przygotować zespół zawierający analizowany mechanizm i go zapisać. Należy uwzględnić fakt, że w pełni związany zespół nie ma możliwości ruchu i nie będzie mógł być poddany analizie (zespół nieruchomy) choć moduł symulacji da się uruchomić.

Należy sprawdzić ustawienia symulacji (rys. 2) – panel Zarządzanie

Ustawienia standardowe powodują, że moduł symulacji dynamicznej automatycznie przekształca wiązania założone na etapie składania zespołu w połączenia w symulacji dynamicznej. Takie ustawienie sprawdza się w podstawowych rozwiązaniach, ale najczęściej trzeba wprowadzić dodatkowe stopnie swobody ruchu mechanizmu przez zdjęcie części wiązań. Alternatywnym rozwiązaniem jest wyłączenie opcji przekształcania i utworzenie wszystkich wiązań na etapie symulacji dynamicznej.

Ustawienia Symulacja dynamiczr	na X
Automatycznie przekształcaj wie Ostrzegaj, gdy mechanizm jest u Koloruj ruchome grupy Odsunięcie w położeniu początkow	ązania w standardowe połączenia. nadmiernie związany wym
Wyświetł przwa autorskie w plik	OK Anuluj Zastosuj <<
wyswieu prawa autorskie w pik	BUTAVI.
Wpr. prędkość kątową w obrota Ramki 30 Wielkość osi Z: 20 %	uch na minutę (obr/min)
Mikro model mechanizmu	
Precyzja zespołu:	Prędkość zrzutu ekranu:
0,001 mm	10,000 mm/s
Precyzja rozwiązywania:	Prędkość standaryzacji:
0,000	10,000 mm/s

Rys.2. Polecenie Ustawienie Symulacja dynamiczna

Obrotowe	:1 (Podstawa:1, Wahadlo:	1)	×
Ogólne	sss 1 (R)		
	yes	×	8
⊡ włąc	z moment obrotowy połącze	enia	
		Tłumienie:	
	1>	0,000 N mm s/deg	>
S	prężyna Poł. swobodne: 0,00 deg >	Sztyw. sprężysta: 0,000 N mm/deg	>
Т	arcie suche Współczynnik:	Promień:	
	0,100 >	5,000 mm	>
2		ОК	Anuluj

Po zastosowaniu koniecznych połączeń można przejść do wymuszania działania mechanizmu stosując obciążenia siłami, silnikami, momentami czy siłą grawitacji. W tym celu w określonym połączeniu wprowadza się zmiany we właściwościach połączenia (rys. 3). W podanym na rys. 3 przykładzie w połączenie obrotowe wprowadza się tarcie suche, które będzie tworzyć moment hamujący.

Rys. 3. Modyfikacja właściwości połączenia obrotowego

Siłę grawitacji (obciążenie całej konstrukcji siłą ciężkości) wprowadza się przez definicję kierunku i zwrotu działania tej siły (rys. 4) przez edycję obciążeń zewnętrznych w drzewie modelu.

Zespół Modelowanie <u>Symulacja o</u>	dynamiczna		
Nieruchome	Siła ciężkości		×
+ Podstawa_2:1	Wyłącz	Element	
+ C Połączenia standardowe	Element	○ Komponenty wektora	
 Obciążenia zewnętrzne Šiła ciężkości 	₽	Kierunek	
	Wartość:	9810,000 mm/s^2	
	Komponenty w	vektora	
	g[X]:	0,000 mm/s^2	
	g[Y]:	0,000 mm/s^2	
	g[Z]:	-9810,000 mm/s^2	
	2	OK Anuluj	

Rys. 4. Definiowanie grawitacji

Odtwarzanie symulacji					
	I 🕨 🛃 I	N (R)	2		
1,000 s	100	1	~		
0,00 s	0%	00:	00:00		

Rys. 5. Polecenie odtwarzanie symulacji

Samo przeprowadzenie symulacji wykonuje się poleceniem Odtwarzanie symulacji (rys. 5), gdzie można określić czas trwania symulacji i ilość kroków. Przyciski sterujące umożliwiają rozpoczęcie, wstrzymanie czy powrót do początku. Pierwsza ikona umożliwia wyjście z Odtwarzania i przejście do ustawień modułu symulacji.

Ślad	×
Roczątek	Odniesienie:
 ↓ ↓ ↓ ↓ Trajektoria 	Skala
Prędkość	0,010
Przyspieszenie	0,010
ОК	Anuluj Zastosuj

Istnieje możliwość obserwacji zmian położenia poszczególnych elementów złożenia przez zastosowanie polecenia Ślad (rys.6). Polecenie to pozwala wykreślić w przestrzeni trajektorię opowiadającą poszczególnym położeniom wybranego punktu konstrukcji. Może być wykreślania trajektoria (położenie), prędkość i przyśpieszenie.

Rys. 6. Polecenie Ślad

Do pełniejszej analizy zjawisk zachodzących w badanym mechanizmie należy użyć polecenie Grapher wyjściowy (rys. 7). Polecenie to pozwala wykreślić zmiany położenia wybranego punktu w przestrzeni, wartości sił i momentów w wybranym węźle mechanizmu. Istnieje możliwość szukania wartości maksymalnej i wskazania dla których kroków pracy mechanizmu chcemy przeprowadzić analizę MES.

Eksport do MES wybranych w oknie polecenia Grapher zewnętrzny kroków czasowych odbywa się poleceniem Eksportuj do MES, gdzie należy wskazać części które będą w środowisku MES analizowane.

Rys. 7. Polecenie Grapher zewnętrzny

Obliczenia MES

Po eksporcie danych (dla wybranych kroków czasowych) ze środowiska symulacji dynamicznej można rozpocząć analizę MES dla tych kroków czasowych. Wybór odpowiedniego kroku wykonuje się w momencie definiowania symulacji (rys. 8) – przez wybór odpowiedniego kroku czasowego w opcji Analiza obciążeń w ruchu.

Utwórz nowe badanie	x				
<u>N</u> azwa: <u>C</u> el projektu:	Analiza statyczna:4 Jeden punkt ~				
Typ badania Stan modelu Analiza statyczna Wykryj i wyeliminu Oddziel naprężeni Analiza obciążeń w Część Wahadlo:1 Analiza modalna Liczba postaci Zakres częstotliwa Oblicz postaci z uw Rozszerzona dokł	uj postaci bryły sztywnej a wzdłuż powierzchni kontaktu w ruchu Przedział czasu T:0 T:0,19 T:0,19 T:0,38 3 ości 0,000 - 0,000 względnieniem obciążeń adność				
Tolerancia	Tvp				
0,100 mm	Związane				
Normalna sztywność	Sztywność styczna				
0,000 N/mm	0,000 N/mm				
Tolerancja złącza skorupy 1,750 (jako wielokrotność grubości skorupy)					
Resetuj OK Anuluj					

Rys. 8 – Wybór kroku czasowego do analizy MES

Ćwiczenie nr 13. Symulacja dynamiczna - Zadania do wykonania

Zadanie nr 1.

Celem zadania jest przeprowadzenie analizy dynamicznej zespołu pokazanego na rysunku (wraz z wymiarami).

Zespół składa się z podstawy oraz wahadła (niezbędne pliki na stronie www). Po wykonaniu elementów należy je wstawić do zespołu i złożyć wykorzystując wiązanie obrotowe i połączenie kątowe.

Etapy realizacji symulacji dynamicznej

- a) Po wykonaniu zespołu i założeniu wiązań zapisać złożenie na dysku;
- b) Uruchomić środowisko Symulacji dynamicznej;
- c) Uruchomić symulację Odtwarzacz symulacji z czasem odtwarzania 1 s, obrazy 100 zaobserwować brak ruchu elementów;
- d) wyłączyć połączenie kątowe i włączyć działanie grawitacji z kierunkiem ku podstawie;
- e) Ponownie uruchomić odtwarzacz symulacji z czasem odtwarzania 10s;
- f) Zmienić właściwości połączenia obrotowego Edycja momentu obrotowego włączyć tarcie suche. Wartość współczynnika tarcia 0,1 promień 5mm;
- g) Ponownie wykonać symulację. Zmienić ustawienia współczynnika tarcia na 0,2;
- h) Uruchomić Grapher wyjściowy;
- i) Dodać trasę jako element wybrać część walcową wahadła;
- j) Uruchomić ponownie symulację. W oknie graphera wybrać Moment i siłę (własności połączenia obrotowego) oraz położenie (kierunek osi Z);

🕅 Symulacja dynamiczna - Grapher wyjściow	vy					_	\Box \times
🏂 🖉 🚅 🖶 🔁 🗠 🖄 🕎 🛍	۹ 🛃 🚭						
	🎽 Czas (s) 📕	Moment (Obrot	P[Z] (Trasa: 1) (Siła (Obrotowe:		^
Połączenia standardowe	0,070	00 3	,58954	116,28800	0,70910		
Pozvcie	0,080	00 4	,48339	109,28500	0,88538		
	0,090	00 5	,49217	101,58900	1,08405		
Przyspieszenia		00 6	,58692	93,35730	1,29940		
Obciążenia stawowe		00 7	89620	76 16570	1,52468		
E-Sita	0,130	100 1	0.02880	67,76060	1,97486		
Sita[X]	0,140	00 1	1,08510	59,91380	2,18152		
Sita[Y]	0,150	00 1	2,01670	52,96880	2,36337		
Siła[Z]	0,160	00 1	2,77742	47,25650	2,51136		
Moment	0,170	00 1	3,32730	43,06610	2,61766		
Moment	0,180	00 1	3,63600	40,61690	2,67644		_
	0,190	100 1	3,68640	40,03580	2,68440		×
Moment[Z]	150,000						;
🗈 🖳 Zmienne użytkownika	105.000	1.0					
…[比] Ramki odniesienia	125,000	MAAAA	A				
⊡ ~ V Trasy	100,000	101111111	A A A A				
Irasa: 1 (Wanadio: 1)/Nieruchome Pozycie	75,000	$+ \frac{1}{2} + $	1444444444	AAAAA	A		
P	50.000	14-4-4-4	144444	MAAAAA	ΝΛΑΑΑΑΑ	AAA	
🗖 P[X]						0001	
P[M]	25,000	40000					
Eksportui do EEA	0,000	proved a	<u> </u>	<u> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>			
		0 1,25	2,5	3,75 5	6,25 7,5	8,75	10
< >				Czas (s)			

- k) Znaleźć czas, w którym występuje maksymalny moment, t₀;
- I) Wybrać kilka pozycji do eksportu do modułu MES wykonać eksport wahadła;
- m) Utworzyć nową symulację (nowe badanie) dla czasu t₀;
- n) Wykonać obliczenia dla czasu, w którym występuje maksymalny moment, określić odkształcenie wahadła i reakcje w obrębie mocowania.

Zadanie nr 2.

Celem ćwiczenia jest nabycie umiejętności określania interakcji pomiędzy pracującymi elementami, z wykorzystaniem połączenia **Kontakt 2D**. Wykonać złożenia prostego mechanizmu zapadkowego zgodnie z rysunkiem (niezbędne pliki na stronie www).

Po wykonaniu złożenie i wstawieniu niezbędnych relacji przejść do **Symulacji dynamicznej**. Sprawdzić, jak program przekształcił więzy na połączenia, można skorzystać z narzędzia **Status mechanizmu**.

Dodać siłę grawitacji, poddać edycji połączenie obrotowe korpus-koło, dobrać prędkość obrotową koła tak aby mechanizm zapadkowy pracował. Zweryfikuj, czy mechanizm działa poprawnie?

Dodać niezbędne Kontakty 2d (1 – pomiędzy *kołem-zapadką* oraz 2 – pomiędzy *zapadką-kołkiem oporowym korpusu*). Zweryfikuj, czy mechanizm działa poprawnie?

Poddać edycji kontakt *koło-zapadka*, dodać sprężystość obiektów (parametr **Przywrócenie** – 0 ciało niesprężyste, 1 ciało sprężyste) oraz tarcie elementów (stal-stal 0,8). Zweryfikuj, czy mechanizm działa poprawnie?

Zadanie nr 3.

Wykonać zespół z elementów jak na rysunku – materiał wybrać dowolnie (niezbędne pliki na stronie www). Wstawić element do zespołu 4 razy (pierwszy element unieruchomić). Zapisać zespół jako **CW3_1**. Złożyć zespół zgodnie z rysunkiem, użyć połączenie obrotowe tak aby otwory w poszczególnych elementach pasowały do siebie i tworzyły ramkę prostokątną (wiązanie zestawiające lub równoległe – w jednym narożniku). Zapisać zespół jako **CW3_2**.

Otworzyć nowy pusty zespół i przejść do środowiska symulacji dynamicznej – sprawdzić ustawienia tj. czy jest <u>włączona</u> automatyczna konwersja wiązań – **Automatycznie przekształcaj wiązania w** standardowe połączenia.

Otworzyć zapisany zespół **CW3_2** i przejść do środowiska symulacji dynamicznej. Sprawdzić jakie połączenia zostały uzyskane w wyniku konwersji automatycznej (3 obrotowe i jedno linia-punkt), sprawdzić **Status mechanizmu**.

Sprawdzić możliwość ruchu i dołożyć dodatkowe połączenie (Kontakt 2D) uniemożliwiające przenikanie się elementów. Sprawdzić działanie poszczególnych parametrów połączenia.

Otworzyć nowy pusty zespół i przejść do środowiska symulacji dynamicznej – sprawdzić ustawienia tj. czy jest <u>wyłączona</u> automatyczna konwersja wiązań – **Automatycznie przekształcaj wiązania w standardowe połączenia.**

Otworzyć **CW3_1**, w którym jest brak wiązań. Przejść do środowiska symulacji dynamicznej i wykonać ręcznie połączenia (obrotowe) w trybie wyłączonej automatycznej konwersji wiązań. Sprawdzić **Status mechanizmu**.

Zadanie nr 4.

Celem ćwiczenia jest wykonanie złożenia prostego mechanizmu krzywkowego, wykonania symulacji pracy mechanizmu z określeniem maksymalnej siły działającej na trzpień mocujący krzywkę.

Wykonać złożenie mechanizmu krzywkowego (niezbędne pliki na stronie www) jak na rysunku. Zastosuj niezbędne relegacje do prawidłowego spozycjonowania elementów (wykorzystaj tryb: **Połączenia**)

W celu symulacji poprawnej pracy należy przejść do środowiska **Symulacji dynamicznej**. Do zasymulowania sprężyny przyłożyć siłę F = 500 N oraz aktywuj działanie sił grawitacji na mechanizm. W kolejnym kroku przeanalizuj nadane przez środowisko połączenia dla mechanizmu krzywkowego.

Odnajdź połączenie obrotowe korpus-krzywka, poddaj je edytuj i wymuś w nim ruch obrotowy krzywki wynoszący 360 deg/s. Ustawić czas symulacji na 4s i przeprowadzić symulację mechanizmu – czy mechanizm działa poprawnie?

Jeżeli nie dodaj **Kontakt 2D** pomiędzy krzywką a dźwignią, przeprowadzić ponownie symulację pracy mechanizmu.

Wyznaczyć maksymalną siłę działającą na trzpień mocujący dźwignię do korpusu.

Zadanie nr 5.

Celem ćwiczenia jest wykonanie symulacji ruchu łyżki spycharki (obrót) wymuszanego siłownikiem i określeniem sił koniecznych do wykonania takiego ruchu (niezbędne pliki na stronie www).

W etapie drugim wykonać symulację ruchu łyżki obciążonej 2-3 elementami, które w czasie obrotu łyżki mogą się przesuwać i obracać w łyżce.

Zespół po zakończeniu ruchu Wykonać zespół z elementów jak na rysunku. Nie zakładać wiązań pomiędzy poszczególnymi elementami – wstawić do zespołu i zapisać zespół.

Uruchomić środowisko symulacji dynamicznej i założyć odpowiednie połączenia w celu uzyskania mechanizmu umożliwiające obracanie łyżki. Ruch zespołu jest wymuszany pracą siłownika (połączenie walcowe) ze sterowaną zmianą położenia od jednego (stan początkowy) do drugiego (stan końcowy).

Przykładowe możliwe połączenia dla pustej łyżki pokazano poniżej.

Zadanie nr 6.

Celem ćwiczenia jest wykonanie symulacji ruchu połączenia śrubowego i wykorzystanie opcji **Opublikuj** film.

Wykonać połączenie śrubowe zgodnie z rysunkiem (niezbędne pliki na stronie www), wykorzystać połączenie **Obrotowe**, unieruchomić nakrętkę.

Przejść do **Symulacji dynamicznych**, sprawdzić na jakie połączenie tryb automatyczny przekształcił relacje złożenia. Sprawdzić, czy jest możliwość dodania **Połączenia śrubowego**, jeżeli nie to wyłączyć tryb automatycznego przekształcania wiązań na połączenia, usunąć połączenia nadane automatycznie. Ręcznie dodać połączenie **Walcowe** śruba-nakrętka ustawić początek połączenia na płaszczyznę oznaczoną strzałką na rysunku, następnie dodać połączenie **Śrubowe** (ustawić skok gwintu na 1,5 mm). Poddać edycji połączenie **Walcowe**, wymusić ruch obrotowy połączenia – stała prędkość 1440 deg/s. Wyedytować połączenie śrubowe, dodać współczynnik tarcia gwintu stal-stal równy 0,8.

Ustawić czas symulacji na 5 s i sprawdzić, czy połączenie śrubowe porusza się poprawnie.

Ustawić symulację na początek, wybrać opcję **Opublikuj film** ^(E), wskazać lokalizację nagrania, pozostałe parametry bez zmian. Uruchomić ponownie symulację, po jej zakończeniu ponownie nacisnąć **Opublikuj film**, co spowoduje zatrzymanie nagrania. Obejrzeć nagraną animację.

Zadanie nr 7.

Celem ćwiczenia jest wykonanie prostego mechanizmu śrubowego i przeprowadzenie symulacji jego pracy.

Do zbudowania mechanizmu śrubowego wykorzystać złożenie śruby z zadania 6, pozostałe elementy na stronie www. Zbudować prosty mechanizm przedstawiony na rysunku.

Do poprawnej pracy mechanizmu nie ma konieczności projektowania sworzni w węźle 1 oraz 2.

W złożeniu należy prowadzić niezbędne połączenia elementów, tak aby mechanizm śrubowy był poprawnie złożony. Unieruchomić element podstawy.

v.2023

Po wykonaniu złożenia przejść do środowiska **Symulacji dynamicznej**, przeanalizować zaproponowane przez program **Połączenia**, rozważyć, czy są poprawne z punktu widzenia możliwości pracy mechanizmu śrubowego:

- Węzeł 1 połączenie obrotowe;
- Węzeł 2 połączenie punkt-linia (należy dokonać edycji połączenia i zablokować maksymalnie dwie możliwości ruchu, trzeci kierunek ruchu jest blokowana poprzez płaszczyznę początkową połączenia);
- Węzeł 3 połączenie walcowe oraz połączenie śrubowe;
- Węzeł 4 połączenie punkt-linia (należy dokonać edycji połączenia i zablokować maksymalnie dwie możliwości ruchu, trzeci kierunek ruchu jest blokowana poprzez płaszczyznę początkową połączenia);
- Węzeł 5 połączenie obrotowe.

Narzędziem **Status mechanizmu** sprawdzić, czy układ nie jest przesztywniony. Wyedytować połączenia, w których zachodzi tarcie, dodać współczynnik tarcia stal-stal równy 0.8, dodać grawitację, obciążyć ramię ruchome dowolną siłą F działającą na podnoszone ramię, sprawdzić, jak zmienia się siła działająca na połączenie śrubowe, wyznaczyć maksymalną siłę tnącą w Węźle 1.

Zadanie nr 8.

Celem ćwiczenia jest wykonanie symulacji działania sprężyny w przypadku obciążenia siłą zewnętrzną elementu połączonego połączeniem obrotowym z drugim elementem.

Wykonać zespół (niezbędne pliki na stronie www), podstawa ze stali węglowej, ramię z aluminium ustawić pod kątem 30° od pionu.

Spiralna sprężyna: Sprężyna	/amortyzator/dźwignik:3 X				
Wyłącz siłownik					
Sztywność:	0,200 N/mm >				
Długość swobodna:	79,500 mm > 🛂				
Tłumienie:	0,0003 N s/mm >				
2	OK Anuluj <<				
Typ: Spiralna sprężyna V					
Wymiary	Właściwości				
Promień: 10,000 mm	Powierzchnie: 6				
	Obroty: 4				
	Promień przewodu: 2,000 mm				
+ Przezroczystość -					
Skala:					
Wyświet 0,010					

W środowisku symulacji dynamicznej wstawić dwa połączenia typu sprężyna. Dane sprężyny.

Dodać siłę grawitacji i dodatkową siłę działającą w pionie z siłą 30N (początek procesu) zmniejszającą się do 0 N po 3 s.

Sprawdzić działanie mechanizmu i poprawić parametry sprężyny tak aby zakres ruchu nie przekraczał 30°.

Zadanie nr 9

Wykonać symulację zespołu 3 wahadeł, siłą napędową jest grawitacja (niezbędne pliki na stronie www).

Materiał wahadła mosiądz. Wprowadzić odpowiednie powiązania i uzyskać efekt odbicia sprężystego tak aby na przemian poruszały się kulki 1 i 3.

Zadanie nr 10

Wykonać 2 elementy. Podstawę pokazaną na rysunku wykonać ze szkła. Kulkę o średnicy 20 mm wykonać ze stali, dodatkowo nadać teksturę np. Korek (niezbędne pliki na stronie www).

Utworzyć zespół z obu części. Element walcowy unieruchomić. Kulkę umieścić swobodnie nad elementem walcowym podobnie jak na rysunku (blisko wewnętrznej krawędzi wycięcia). Przeprowadzić symulację dynamiczną wyznaczyć tor jaki wykreśli środek kuli w ciągu 5 sekund. Założyć działanie grawitacji i dwa połączenia kulki z wnętrzem podstawy – przestrzenne i połączenie 3D. W połączeniu 3D ustawić tłumienie 10N/mms a współczynnik tarcia na 0,1

Stan początkowy można określić za pomocą połączenia przestrzennego