Ćwiczenie nr 14 – Zaawansowane możliwości programu

Materiały do kursu

Skrypt "CAD – AutoCAD 2D" strony: 175-185 skryptu

Obliczenia – wykorzystanie kalkulatora

Wywołanie kalkulatora podręcznego: kalk (_cal). Aby przywołać kalkulator w trakcie działania innego polecenia trzeba poprzedzić go znakiem apostrofu: 'kalk. Przykład: obliczenie pola okręgu o promieniu 2,5 (czyli 2,5² π):

Polecenie: kalk >> Wyrażenie: 2.5^2*pi

W wyrażeniach stosuje się następujące operatory (podane w kolejności rosnącego priorytetu):

Dodawanie, odejmowanie:	+
Mnożenie, dzielenie:	* /
Potęgowanie:	^ (np. $2.5^{0.5} = 2,5^{0.5}$)

oraz z następujące funkcje:

Funkcje	Nazwy
Trygonometryczne	sin(a), cos(a), tang(a)
Trygonometryczne "arcus"	asin(x), acos(x), atan(x)
Logarytm naturalny i dziesiętny:	ln(x), log(x)
Potęga e i potęga 10:	exp(<i>x</i>), exp10(<i>x</i>)
Kwadrat i pierwiastek liczby:	sqr(x), sqrt(x)
Zamiana radianów na stopnie i odwrotnie	r2d(a),d2r(a)
Liczba π	pi (symbol specjalny predefiniowany)
Pobranie promienia okręgu łuku	rad (prosi o wskazanie okręgu lub łuku)
Zaokrąglenie do najbliższej liczby całkowitej	round(<i>x</i>)

tu: *x* – liczba lub wyrażenie rzeczywiste, *a* – liczba lub wyrażenie określające kąt w stopniach dziesiętnych. Liczby podaje się jak w Visual Basicu np. 10; –20.45; 10.34E5 itp. Przykłady wprowadzania kątów w innych jednostkach – radiany: 1.23**r**; grady: 123.45**g**; w formacie stopnie, minuty, sekundy: 12**d**30'45". Nawiasy okrągłe "()" służą do zmiany kolejności wykonywania obliczeń. Format zapisu punktów i wektorów:

Układ	Format	Przykład
prostokątny	[x, y, z] lub [x, y]	[2,1,0]; [1+1,1,0]
biegunowy	[r< α]	[125.0 < 30]; [25*5 < asin(0.5)]
walcowy	$[r < \alpha, z]$	[50.23 < 33d45′, -46]
sferyczny	$[r < \alpha < \phi]$	[4.5 < 0.6r < 33]

Symbole są **wyrażeniami** reprezentującymi: x, y, z – współrzędne, r – promień i α , ϕ – kąty. Funkcje i operatory dla obliczeń na punktach i wektorach:

Operacja	Zapis/przykład
Dodawanie, odejmowanie wektorów	+ - (np. [1,0,0]+[2,0,1])
Mnożenie skalarne wektorów lub wektora przez liczbę	* (np. 2*v lub v*u)
Dzielenie wektora przez liczbę	/ (np. v/2.5)
Wektorowe mnożenie wektorów	& (np. v&u lub [1,0,0]&[0,1,0])
Obliczanie długości wektora lub wart bezwzględnej	abs (v)
Wektor oraz	vec(A, B)
wektor jednostkowy między punktami A i B	vec1(A, B)
Odległość między punktami A i B	dist(A,B)
Wyznacza punkt na linii AB . Parametr <i>x</i> definiuje pozycję punktu na linii. $x = 0$ oznacza punkt A , $x = 1$ oznacza punkt B a np. $x = 0.5$ oznacza środek odcinka AB	plt(A , B , <i>x</i>)
Kąt miedzy v a osią OX	ang(v)
Kąt miedzy odcinkiem AB a osią OX	ang(A, B)
Kąt o wierzchołku A między AB i AC czyli ∠ABC	ang(A, B, C)
Funkcja bezparametrowa zwracająca współrzędne wskazane- go punktu – patrz przykład 3	cur

Tutaj **v**, **u** – wektory; **A**, **B** i **C** – punkty zapisane symbolicznie lub w formacie opisanym wyżej. Symbol "@" oznacza ostatnio wprowadzony punkt.

W wyrażeniach można używać symboli – tzw. zmiennych. Niektóre są predefiniowane jak np. **pi** czy @, ale można też zdefiniować własne (ciąg liter, cyfr i "_" nie zaczynający się od cyfry). Ich stosowanie jest wskazane w przypadku, gdy ich dokładne wartości uzyskane w wyniku obliczeń posiadają długie rozwinięcie dziesiętne. Przypisane do symbolu wartości pamiętane są z maksymalną dokładnością, podczas gdy te wyświetlane są zaokrąglane do tylu miejsc po przecinku ile ustawiono w ustawieniach programu (polecenie **jedn** pole **Dokładność**) – standardowo 4. Aby w wyrażeniu zdefiniować własny symbol i przypisać mu wartość wystarczy przed wyrażeniem napisać jego nazwę i znak "=", np. **d = 200.0/pi**. Ale uwaga, jeżeli dany symbol był wcześniej zdefiniowany, to poprzednia wartość zostanie zapomniana. Nazwę tą można później użyć w innych wyrażeniach kalkulatora np. **d^2/4*pi**. Aby użyć wartości symbolu w odpowiedzi na żądania AutoCADa należy napisać jego nazwę poprzedzoną znakiem wykrzyknika np. **!d** – patrz przykład **2**.

Uwaga – wielkość liter nazw funkcji i symboli jest bez znaczenia. Zatem **abs**, **Abs**, **ABS** itp. oznaczają to samo. Aby nie było nieporozumień najlepiej wszystko pisać tą sama wielkością liter.

Przykłady użycia kalkulatora programu

Automatyczne wykorzystanie uzyskanego wyniku, jako odpowiedzi na pytanie programu po wywołaniu polecenia nakładkowo.

Przykład 1. Narysowanie koła o obwodzie 125,5 jednostek:

```
Polecenie: okrąg
Określ środek okręgu lub [3p/2p/Ssr]: wskazujemy punkt na ekranie
Określ promień okręgu lub [śreDnica]: d
Określ średnicę okręgu: 'kalk (nakładkowe wywołanie kalkulatora)
>> Wyrażenie: 125.5/pi (obliczamy średnicę ze wzoru D = B/π)
39.948 (ten wynik jest użyty, jako odpowiedź na pytanie o średnicę)
```

Przykład 2. Jak wyżej, ale z wykorzystaniem symbolu:

```
Polecenie: kalk
>> Wyrażenie: s = 125.5/pi (definiujemy symbol s i przypisujemy mu wynik – maksymalna dokładność)
39.948
```

```
Polecenie: okrąg
Określ środek okręgu lub [3p/2p/Ssr]: (wskazujemy środek okręgu)
Określ promień okręgu lub [śreDnica]: d (wybór opcji średnica)
Określ średnicę okręgu: !s (używany symbol s jako odpowiedź na pytanie o wart. średnicy)
39.948
```

Przykład 3. Wyznaczenie punktu, np. w czasie rysowania odcinka, leżącego w 1/4 odległości między innymi punktami. Wyłącz stałe tryby lokalizacji OBIEKT:

Polecenie: _line Określ pierwszy punkt: 'kalk
>> Wyrażenie: plt(cur,cur,0.25)
>> Podaj punkt: (wskazujemy pierwszy punkt – skutek pierwszego wywołania funkcji cur)
>> Podaj punkt: (wskazujemy drugi punkt – skutek drugiego wywołania funkcji cur)

Przykład 4. Rysowanie przekroju kanału kołowego, przez który ma płynąć medium z prędkością v = 0.5 m/s i wydatkiem Q = 25.6 m³/h. Aby wyznaczyć promień kanału najpierw wyliczamy pole powierzchni kanału A = Q/v a potem promień $r = \sqrt{A/\pi}$, który musimy zaokrąglić do liczby całkowitej funkcją **round**(). Zatem procedura przedstawia się w następujący sposób:

```
Polecenie: kalk (najpierw obliczenia)
>> Wyrażenie: v = 0.5 (nadajemy zmiennej v wartość prędkości medium)
0.5
Polecenie: ENTER (powtórzenie polecenie kalk)
KALK >> Wyrażenie: q = 25.6/3600 (nadajemy zmiennej q wartość wydatku przeliczoną na m/s)
0.007111111
Polecenie: ENTER
KALK >> Wyrażenie: a = q/v (wyliczamy pole przekroju i wstawiamy do a)
0.0142222222
Polecenie: ENTER
KALK >> Wyrażenie: r = round( sqrt(a/pi)*1000 )
67
Polecenie: okrąg (rysujemy kanał)
Określ środek okręgu lub [3p/2p/Ssr (sty sty promień)]: (wskazujemy środek okręgu)
Określ promień okręgu lub [śreDnica] <50.3740>: !r (korzystamy z wyliczonego r)
67
```

Skrypty - wsadowe przetwarzanie poleceń

Skrypt jest plikiem tekstowym ASCII z rozszerzeniem SCR zawierającym polecenia programu AutoCAD wypisywane dokładnie tak samo, jak w linii poleceń. Każda spacja czy każde wciśnięcie ENTER ma znaczenie. Skrypt tworzy się systemowym notatnikiem (**notepad**) lub innym edytorem plików ASCII (tekstowych) i zapisuje z rozszerzeniem SCR. Plik skryptu uruchamia się poleceniem **pokaz** (**_script**). Aby poprawnie napisać skrypt trzeba dokładnie znać przebieg dialogu podczas wykonywania danego polecenia i w samym skrypcie wpisywać tylko odpowiedzi użytkownika podawane jako reakcje na zapytania AutoCADa.

plinia <mark>-</mark>	
0 , 0 <mark>+-</mark> -	
2.5,0	
2.5,1.3 <mark>+</mark>	
0,1.3 <mark>↓</mark>	
Z	

Wyżej pokazano dwie wersje przykładowego skryptu o nazwie **prost.scr** rysującego prostokąt o wymiarach 2,5 x 1,3 z narożnikiem w punkcie (0,0). Znaczek ← wskazuje miejsca wci-

В

А

0

śnięcia klawisza ENTER. Aby wszystko działało poprawnie plik powinien zawierać TYLKO te znaki, które pokazano w ramkach.

Do narysowania skomplikowanych krzywych składających się z dużej liczby punków jak np. profile łopatek, krzywki itp., które są w jakiś sposób wyliczane lub posiadamy tabelę współrzędnych punktów z jakiegoś źródła można wykorzystać Excela. Są dwa sposoby – jeden z zastosowaniem skryptu (SCR) oraz drugi bezpośredni.

Metoda I – z zastosowaniem skryptu

- 1. W Excelu wypełnij dwie (rys. obok) kolumny współrzędnymi (x,y) punktów krzywej. Można je wygenerować za pomocą formuł lub wpisać ręcznie. W przykładzie obok są to kolumny A i B oraz wiersze od 1 – 23. Dany arkusz powinien zawierać tylko te dwie kolumny.
- 2. Zapisz (menu: Plik Zapisz jako) dany arkusz jako plik typu Plik CSV (rozdzielany przecinkami). W wyświetlanych później komunikatach wybierz odpowiedzi standardowe (ENTER).
- 3. Korzystając z zasobów systemu operacyjnego, odszukaj ten plik i otwórz go (kliknij prawym przyciskiem na nazwie i wybierz Otwórz za pomocą a potem Notatnik).
- 4. W notatniku dopisz na początku wiersz z tekstem plinia a na końcu pusty wiersz (sam ENTER). Zamień (Ctrl-H) wszystkie przecinki na kropki, a potem średniki na przecinki (kolejność istotna). Zapisz plik opcją Plik \rightarrow Zapisz jako dopisując na końcu nazwy rozszerzenie .scr i zamknij edytor.
- 1 3,35 2 0,8 7,69 3 5.33 13.3 4 10.24 14.87 5 20.32 13.646 25,32 12.25 7 30.52 10,36 8 40.5 6,04 9 43,02 4,85 10 48,37 2,12 11 49,8 1,39 12 51,46 0.43 13 49,8 0,43 14 48.37 1.02 15 43,02 2,83 16 40.5 3.52 17 30,52 5.45 18 25.32 5,85 19 15,28 4,91 20 10,24 3,32 21 5,33 0.6 22 3,35 0 23 0 3,35 Metoda I
- 5. W programie AutoCAD wyłącz tryb OBIEKT. Wywołaj polecenie pokaz podając lub odszukując w oknie wyboru utworzony plik SCR.

Metoda II - bezpośrednia

- 1. W Excelu wypełniamy dwie (rys. obok) kolumny współrzędnymi (x,y)punktów krzywej. Można je wygenerować za pomocą formuł lub wpisać ręcznie. W przykładzie obok są to kolumny A i B oraz wiersze od 3 – 25 oznakowane tytułem "Liczbowo"
- 2. Zaznacz wpisane wartości (obszar A3:B25) i przekopiuj w inne miejsce najlepiej równolegle w prawo do komórek sąsiednich (na rys. obszar D3:E25 – tytuł "Tekstowo").
- 3. Zamarkuj (o ile nie jest to zrobione) przekopiowany obszar i zamień przecinki na kropki. Wciśnij CTRL-H (lub menu: Narzędzia główne | Edytowanie → Zamień) i użyj przycisku Zamień wszyst-

1	A	В	C D	E	F	G
1	Liczboy	vo	T	ekstowo		Tekstowo połączone
2	х	Y	x	Y		X,Y
3	0	3,35		0 3.35		0,3.35
4	0,8	7,69	0.8	7.69		0.8,7.69
5	5,33	13,3	5.33	13.3		5.33,13.3
6	10,24	14,87	10.24	14.87		10.24,14.87
7	20,32	13,64	20.32	13.64		20.32,13.64
8	25,32	12,25	25.32	12.25		25.32,12.25
9	30,52	10,36	30.52	10.36		30.52,10.36
10	40,5	6,04	40.5	6.04		40.5,6.04
11	43,02	4,85	43.02	4.85		43.02,4.85
12	48,37	2,12	48.37	2.12		48.37,2.12
13	49,8	1,39	49.8	1.39		49.8,1.39
14	51,46	0,43	51.46	0.43		51.46,0.43
15	49,8	0,43	49.8	0.43		49.8,0.43
16	48,37	1,02	48.37	1.02		48.37,1.02
17	43,02	2,83	43.02	2.83		43.02,2.83
18	40,5	3,52	40.5	3.52		40.5,3.52
19	30,52	5,45	30.52	5.45		30.52,5.45
20	25,32	5,85	25.32	5.85		25.32,5.85
21	15,28	4,91	15.28	4.91		15.28,4.91
22	10,24	3,32	10.24	3.32		10.24,3.32
23	5,33	0,6	5.33	0.6		5.33,0.6
24	3,35	0	3.35	0		3.35,0
25	0	3,35		0 3.35		0,3.35

ko. Można dodatkowo CTRL–1 nadać (zaznaczonemu) obszarowi format tekstowy.

- 4. W kolumnie sąsiedniej w wierszu odpowiadającym pierwszemu punkowi (rys. komórka G3) wpisz formułę =D3&", "&E3 i wypełnij tym wzorem tą kolumnę aż do pozycji odpowiadającej ostatniemu punkowi. Formuła ta nakazuję połączyć tekstowo (operator &) zawartość komórki D3 (współrzędna *x*), przecinka "," i zawartość komórki E3 (współrzędna *y*) w jedną całość. Ogólnie D3 i E3 reprezentują adresy odnoszące się do pierwszego punktu z poprzedniego obszaru i mogą mieć inne wartości.
- 5. Zamarkuj nowo utworzoną kolumnę (na rys. G3:G25) i wklej CTRL– C ją do schowka.
- 6. Przejdź do AutoCADa wydaj polecenie **plinia**, wklej CTRL–V zawartość schowka i zakończ polilinię ENTER jeśli ma być otwarta lub opcją **Zamknij** jeśli ma być zamknięta.

UWAGA. Jeżeli separatorem dziesiętnym (w Excelu) jest kropka, to zamiana przecinków na kropki jest zbędna. Mimo to w metodzie I może być jeszcze konieczna zamiana średników na przecinki, jeśli te ostatnie a nie przecinki występują w pliku CSV. W metodzie II natomiast można pominąć etapy 2 i 3. Wystarczy pamiętać, że separatorem dziesiętnym w Auto-CADzie jest kropka a przecinek oddziela współrzędne.

Ćwiczenie nr 14 – Zadania do wykonania

Zadanie A Kalkulator

1. Używając kalkulatora, zdefiniuj następujące symbole: r = 24.33, w = 10.65/2, $h = 2\pi r$ oraz **p** jako punkt odległy od punktu (10,20) o *h* jednostek w poziomie i *w* jednostek w pionie.

Wskazówka. Ostatnie można zapisać p=[10,20]+[h,w] lub p=[10+h,20+w]

- 2. Korzystając ze zdefiniowanych zmiennych i kalkulatora narysuj:
 - okrąg o środku w punkcie **p** i o promieniu *r*.
 - prostokąt o szerokości *w* i wysokości *h*.
- 3. Narysuj dowolny okrąg. Teraz korzystając z kalkulatora narysuj inny okrąg o polu równym połowie pola okręgu poprzedniego. Wykorzystaj funkcje **rad**.
- 4. Narysuj okrąg o polu 314.15

Zadanie B Automatyzacja poleceń

- 1. Posługując się Excelem utwórz a potem zastosuj plik SCR do narysowania jednego okresu sinusoidy o amplitudzie 200 jednostek z dokładnością do 10°. Posłuż się metodą I szczegółowo rozpisaną niżej
 - a) Uruchom program MS Excel
 - b) Wypełnij kolumną A liczbami 0, 10, 20 ... 360 (komórki A1 ... A37) będzie to kolumna rzędnych *x*. Wpisz w komórce A1 liczbę 0 w A2 liczbę 10, zamarkuj je i przeciągnij za prawy dolny narożnik ramki aż do A37.
 - c) Wpisz w komórce B1 wzór =200*sin(radiany(A1))
 - d) Wypełnij tym wzorem kolumnę B aż do pozycji B37 będzie to kolumna odciętych *y*. Kliknij na komórce B1 i przeciągnij trzymając prawy dolny narożnik ramki aż do B37.
 - e) Z menu plik programu Excel wybierz polecenie Zapisz jako
 - f) W oknie dialogowym wybierz typ pliku CSV (rozdzielany przecinkami) (*.csv)
 - g) Zapisz plik na dysku pod nazwą **sinus.csv**.
 - h) Korzystając z zasobów systemu operacyjnego, odszukaj plik sinus.csv i zmień jego nazwę (właściwie tylko rozszerzenie) na sinus.scr.
 - i) Otwórz otrzymany plik korzystając z notatnika systemowego.
 - j) W pliku dopisz na początku wiersz z tekstem plinia
 - k) Dopisz pusty wiersz na końcu pliku (sam ENTER)
 - Zamień (Ctrl-H) wszystkie przecinki na kropki, a potem średniki na przecinki (kolejność wymiany jest ważna).
 - m) Zapisz plik i zamknij edytor.
 - n) W programie AutoCAD wyłącz tryb OBIEKT.
 - o) Wywołaj polecenie pokaz (lub z Karty: Zarządzaj Panel:Aplikacje Uruchom skrypt) i wczytaj plik sinus.scr. Efekt wywołania polecenia można zaobserwować, dopasowując powiększenie poleceniem zoom zakres.
- 2. Korzystając z otwartego Excela i tego wypełnionego już arkusza wykonaj to samo metodą II tj. po skopiowaniu do schowka współrzędnych punktów (CTRL– C) wywołaj polecenia plinia i wstaw dane (CTRL– V).

y s=51,46 profil C-9015A R 3,35 0 23 4 5 6 7 8 9 10 12 15 R 0,4												15A				
		_				. *			_							_
Nr	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
x /mm/	0,00	0,80	3,35	5,33	10,24	15,28	20,32	25,32	30,52	35,46	40,50	43,02	46,80	48,37	49,80	51,46
y _s /mm/	3,35	7,69	11,72	13,30	14,87	14,67	13,64	12,25	10,36	8,36	6,04	4,85	2.97	2,12	1,39	0,40
y _d /mm/	3,35	1,15	0,00	0,60	3.32	4,91	5.65	5.85	5.45	4.68	3.52	2.83	1.60	1.02	0.43	0.43

3.	Wykonaj	dowolną	metodą	profil	łopatki	opisany	na	poniższyn	n rysunku
----	---------	---------	--------	--------	---------	---------	----	-----------	-----------

f /cm ² /	×o/mm/	% /mm/	$I_{xx}/cm^4/$	W ^{min} /cm ³ /	W _{xx} ^{max} /cm ³ /	I _{yy} /cm ⁴ /	W ^{max} /cm ³ /	W _{yy} ^{min} /cm ³ /
3,3	17,47	7,96	0,36	0,45	0,51	4,63	2,58	1,39

Wykorzystaj metodę II. Jeśli przepiszesz współrzędne punktów z tabeli tekstowo z kropką jako separatorem dziesiętnym, to etapy 2 i 3 tej metody można pominąć. Pamiętaj, aby serię punków (x,y_s) przepisać wg rosnącej wartości x (od nr 1 .. 15) a pary (x,y_d) wg malejącej (od nr 15 .. 1) – to zapobiegnie skręceniu polilinii.

- 4. Wyznacz pole pod sinusoidą jej obwód i środek ciężkości
 - a. Zamknij narysowaną polilinię (polecenie edplin opcja Zamknij)
 - b. Przekształć ją w region poleceniem region
 - c. Przy pomocy polecenia paramfiz z odczytaj żądane dane.