Ćwiczenie 7 – Parametryzacja, tworzenie wariantów modeli

Wprowadzenie

W programie Inventor istnieje możliwość skojarzenia parametrów tworzonego modelu z danymi zgromadzonymi np. w arkuszu programu Excel. W czasie tworzenia modelu należy zadbać, aby stosowane szkice były w **pełni związane** tzn. założone wiązania niezbędne do jednoznacznego określenia kształtu i więzy wymiarowe definiujące konieczne wymiary elementu. Na przykład tworząc element w kształcie połowy koła należy upewnić się czy w szkicu zostały założone odpowiednie relacje pionowości (poziomości) pomiędzy końcami łuku i środkiem łuku. Brak tych relacji w czasie zmiany promienia łuku spowoduje zmianę kształtu elementu. Pełne ograniczenie elementu sygnalizowane jest zmianą koloru linii i komunikatem w linii statusu.

Widok "w pełni związanego" szkicu elementu (półkole) z naniesionymi więzami

Przebieg procesu tworzenia modelu parametrycznego powiązanego z arkuszem MS Excel

1. Utworzenie modelu z użyciem w pełni związanych szkiców

2. Utworzenie arkusza Excela zawierającego wielkości, które mają być sparametryzowane. Każda wielkość jest opisana trójką (kolejność kolumn jest ważna): *nazwa parametru* (kolumna A), *wartość parametru* (kolumna B), *jednostka* (kolumna C) zajmującą ten sam wiersz. Wiersze, definiujące wielkości, muszą być wypełniane po kolei bez przerw począwszy od nr. 1. Innymi słowy dla *n* wielkości jest to ciągły obszar arkusza od komórki A1 do Cn – patrz przykład niżej.

Nazwa parametru (kol. A) nie może kolidować z nazwami parametrów użytymi w Inventorze

Jednostki (kol. C) podajemy:

- wymiary liniowe (promienie, średnice, itp.) → mm, cm, m, cal
- *katy* \rightarrow deg, rad
- skalary (np. liczba elementów w szyku) \rightarrow ul

	А	В	С
1	srednica_z	20	mm
2	srednica_w	10	mm
3	wysokosc	5	mm
4	kat_wyc	20	deg
5	ilosc_wyc	7	ul
6			

Przykładowy arkusz

3. Wczytanie (połączenie) pliku Excela z występującymi parametrami modelu. W tym celu należy połączyć plik z modelem (karta **Zarządzanie** / polecenie **Parametry** przycisk **Połączenie**) a następnie do poszczególnych parametrów modelu należy przypisać wybrane parametry dołączone z arkusza.

4. Zmiany w arkuszu są przenoszone na model po aktualizacji modelu

Przykładowy element i jego parametry

Zastosowanie modeli iPart

W praktyce projektowania używa się stosowane często całego typoszeregu elementów tj. elementów o podobnym kształcie, ale różniących się od siebie tylko wartościami wymiarów. Często części tych nie da się utworzyć poprzez skalowanie, ze względu na różne proporcje między poszczególnymi wymiarami w ramach danej części. Inventor oferuje rozwiązanie pozwalające na bazie jednej części utworzyć części podobne – tzw. części *iPart* – co uwalnia projektanta od ręcznego i czasochłonnego tworzenie poszczególnych wariantów przez powtarzanie tych samych operacji.

Element *iPart* jest częścią, która reprezentuje różne warianty wykonania różniące się wymiarami a cały szereg podobnych elementów może być automatycznie wygenerowany przez podanie nowych wartości samych wymiarów (np. przy pomocy arkusza Excela) bez konieczności ponownego szkicowania, wykonywania operacji czy otwierania plików, modyfikacji wymiarów a następnie ich zapisywania pod kolejnymi nazwami. Dodatkowo warianty części *iPart* wstawiane do zespołów mogą być w łatwy sposób zastępowane przez inny wariant bez konieczności ponownego ustawiania zależności pomiędzy częściami.

Aby utworzyć część iPart należy

1. Utworzyć część z wykorzystaniem w pełni związanymi szkicami. W czasie tworzenia części warto nazwać poszczególne parametry w sposób umożliwiający ich łatwą identyfikację.

2. Uruchomić polecenie **Utwórz iPart** z karty **Zarządzanie** sekcji **Redagowanie**. W zakładce **Parametry** polecenia należy wybrać, które występujące w części parametry będą modyfikowane w części *iPart*. Parametry modelu, które chcemy usunąć z naszego arkusza wybieramy w prawym oknie, następnie klikając przycisk ≤< możemy je usunąć. Analogicznie, jeżeli chcemy dodać to wybieramy parametr w drzewie operacji i klikamy przycisk ≥>. Efekty tych działań widać w dolnej części zakładki, w której jest podgląd tworzonego arkusza danych *iPart*.

Element opisu modelu jest automatycznie tworzony, a jako pierwszą kolumna jest nazwa modelu. Domyślną wartością jest nazwa pliku, indeksowana według składnika, przykładowo śruba-01, śruba-02 itd. Kolejną kolumną jest nr części indeksowany analogicznie jak nazwa a kolejne to eksportowane przez nas parametry. Zatwierdzić zmiany przyciskiem OK.

Redagowanie iPart 23 Parametry Właściwości Wyłączenie iFeatures Mate Elementy konstrukcyjne Gwinty Inny Podkl.pt Nazwa Dz Dz Dw Hi - #: Dz (20 mm] Dw Hi Pochylenie - #: Pochylenie [0,0 deg] Inny Inny Faza	
Member Numer części Dz Dw H1 Pochylenie Faza	-
1 Podki-01 Podki-01 20 mm 12 mm 2 mm 0,0 deg 0,2 mm	-
C Opcje Sprawdź OK Anuluj	

Widok elementu (Podkl)

Widok okna polecenia iPart

3. W wyniku działania w pkt 2 w drzewie operacji modelu pojawi się informacja o wygenerowaniu pliku *iPart* w formie dodatkowej rozwijalnej pozycji o nazwie *Tabela*. Po jej rozwinięciu będzie dostępna jedna wersja części. Kolejne będą dostępne po ich wygenerowaniu przez zastosowanie np. arkusza Excela. Dostęp do polecenia przez menu kontekstowe myszy użyte na *Tabeli*. Po wywołaniu arkusza należy go wypełnić zgodnie z potrzebami zachowując odpowiednio oznaczenia i jednostki

	×		А	В	С	D	E	F	G
Model -	(?)	1	Member <defaultrow>1</defaultrow> <filename></filename>	Part Number [Project]	Dz	Dw	H1	Pochylenie	Faza
Y M		2	Podkl-01	Podkl-01	20 mm	12 mm	2 mm	0,0 deg	0,2 mm
Podkl		3	PodkI-02	Podkl-02	25 mm	14 mm	2,5 mm	0,0 deg	0,3 mm
⊳ aj ^j Tabela		4	Podkl-03	Podkl-03	30 mm	16 mm	3 mm	0,0 deg	0,4 mm
Korpusy bryłowe(1)		5							
Bryła 1									
▶ Is- Widok: Główna									
Początek									
Wyciągnięcie proste 1									
Paza1									
🔇 Znacznik końca części									

Drzewo operacji Widok arkusza z wprowadzonymi wartościami parametrów

Przełączanie pomiędzy poszczególnymi wariantami części odbywa się przez wybór wariantu z Tabeli na drzewie operacji.

Wczytywanie danych do szkicu z plików zewnętrznych

W programie Inventor istnieje możliwość wczytania współrzędnych punktów z arkusza Excel lub rysunku AutoCAD. W tym celu należy przygotować plik zawierający współrzędne punktów (Excel) lub rysunek 2D (AutoCAD).

Po uruchomieniu szkicu w części Inventora należy wybrać opcję wstawienia (Panel *Wstaw*/ polecenie **Importowanie punktów** lub **Wczytaj plik AutoCAD**). Połączenie jest jednorazowe – po wczytaniu pliku zmiany w arkuszu/pliku źródłowym nie są przenoszone do szkicu.

Przy wczytywaniu plików AutoCADa nie są przenoszone również założone w trybie parametrycznym więzy geometryczne

Plik AutoCada z wiązaniami

Szkic Inventora bez wiązań geometrycznych

Przy wczytywania pliku Excela istnieje możliwość wyboru sposobu wstawiania danych: mamy możliwość wstawienia samych punktów, punktów połączonych linią lub punktów połączonych splajnem (przycisk *Opcje* polecenia **Importowanie punktów**)

👢 Otwieranie				\times
🧐 Biblioteki	Opcje otwierania pliku	× 🏚 🖻 💷 🗸		
Content Center Files	Opcje importu	modyfikacji	Тур	Rc
	Utwórz punkty	2022 12:33	Folder plików	
	Utwórz linie	2022 09:29	Arkusz programu	
	🔿 Utwórz splajn			
Podgląd nie jest dostępny	CK Anduj			>
	Pliki typu: Dliki Excel (* vle* vlev)			
	Plik projektu: Default.ipi		Y Projekty	
Ostatnio zapisany:				
(3)				
		Opcje	Otworz Anuluj	

W takim przypadku ważne jest odpowiednie ustawienie danych w pliku Excela (program łączy kolejno wpisane do arkusza punkty). Aby uzyskać zamkniętą pętlę należy powtórzyć wspólrzędne pierwszego w ostatnim wierszu.

Przykłady

Przykład A. Parametryzacja modelu Inventor z wykorzystaniem Microsoft Excel

1. Przygotuj rysunek kolnierza stalowego wg poniższego szkicu. Konieczne jest, aby na wszystkich tworzonych szkicach nanosić wymiary.

Wykonaj wyciągnięcie na wysokość 10 mm.

- Poleceniem Otwór wykonaj otwór prosty o średnicy 5 mm. W tym celu wykonaj szkic i umieść na nim Punkt na promieniu 20 mm (na godzinie 12). Pamiętaj, aby wiążąc polożenie punktu względem środka układu wskazać dokładnie środek układu a nie okrąg.
- 3. Poleceniem Szyk wykonaj pozostałe 8 otworów w kolnierzu i uzyskaj element jak na rysunku poniżej.

4. W programie *Excel* wykonaj tabelę wymiarów kolnierza, dla nazwania parametrów poszczególnych wymiarów stosuj nazwy proste, unikaj polskich znaków oraz symboli jednoliterowych. Kolejność kolumn JEST WAŻNA, muszą być w układzie: *parametr > wartość parametru > jednostka*.

Dla poszczególnych wymiarów należy podać jednostki np.:

- wymiary liniowe, promienie \rightarrow mm,
- kąt → deg,
- liczba elementów w szyku \rightarrow ul.

	1	0)		
	А	В	С	
1	srednica_z	50	mm	
2	srednica_w	30	mm	
3	wysokosc	10	mm	
4	promien_o	5	mm	
5	promien_s	20	mm	
6	liczba_el	8	ul	
7				
~				

Do aktualnego przykładu wpisz nazwy z poniższego rysunku.

Tak przygotowany plik Excela zapisz w tej samej lokalizacji, co plik części Inventora.

5. W *Inventorze* przejdź do karty **ZARZĄDZANIE** > polecenie **Parametry** f_x **PołĄCZENIE** (1) wczytaj przygotowany wcześniej plik *Excela*. Powinieneś uzyskać efekt jak na rysunku poniżej (2):

ir	ametry								
	Nazwa parametru	Jednostka/t	Równanie	Wartość nomina	Tol.	Wartość modelu	Klucz	Eke	Komentarz
Ī									
	d0	mm	50 mm	50,000000	0	50,000000			
ŀ	d1	mm	30 mm	30,000000	0	30,000000			
	d2	mm	10 mm	10,000000	0	10,000000		Г	
	d3	deg	0,0 deg	0,000000	0	0,000000		Г	
	d5	mm	5 mm	5,000000	0	5,000000			
	S. d12	ul	8 ul	8,000000	0	8,000000			
	d13	deg	360 deg	360,000000	0	360,000000		Г	
	d15	mm	20 mm	20,000000	0	20,000000	Г		
l	Parametry użytkow								
	- D: I WYKŁADY, ZA								
		mm	50 mm	50,000000	0	50,000000	Г	Г	
		mm	30 mm	30,000000	0	30,000000	Г	Г	
	wysokosc	mm	10 mm	10,000000	0	10,000000	Г	Г	
	promien_o	mm	5 mm	5,000000	b	5,000000		Г	
	promien_s	mm	20 mm	20,000000	Ō	20,000000		Γ	
	C liczba_el	ul	8 ul	8,000000	6	8,000000	Г	Г	
CONTRACTOR OF A DAMAGE	n 2 Dodaj wartość num	š = mc× ieryczną	1 Uaktualnij	2	<i>E</i> = <i>m</i>	Reset	uj tolera	ncję	< Mniej
1	2 Połączen	ie	Uaktualnij od razu						Gotowe

6. Teraz należy powiązać parametry wczytane z wymiarami programu *Inventor*. Można to realizować na dwa sposoby:

I. Zamykamy okno **Parametry**, a w drzewie operacji naszego kołnierza należy odnaleźć operacje wyciągnięcia, a następnie dokonać edycji jej szkicu. W edytorze szkicu klikamy na pierwszy wymiar i w oknie zmiany wartości wymiaru klikamy na czarną strzałkę, a z otwartego menu wybieramy opcję *LISTA PARAMETRÓW* (1). Jeżeli poprawnie połączyliśmy plik *Excela* z programem *Inventor* to pojawi się lista wczytanych parametrów (2), dla średnicy zewnętrznej wybieramy > *srednica_z*, a dla otworu > *srednica_w*.

Poprawne przypisanie parametrów do wymiaru powinno dać poniższy efekt (wymiary oznaczone wskaźnikiem funkcji: *fx:*).

II. Powyższe czynności można również wykonać z poziomu okna polecenia **Parametry** klikając na odpowiedni wymiar pojawi się czarna strzałka, po kliknięciu, której z listy wybieramy *LISTA PARAMETROW.*

ľ	Vaz	wa	parametru	parametru Jednostka/t Równanie		War	tość nomina	Tol.		Wartość modelu		Klucz	
S.	-	Par	rametry modelu										
	• d0		mm	srednica_z		7mierz				00			
	d1 mm			mm	srednica_w	1	Deletion				00		
			mm	wysokosc 0,0 deg promien_o		Pokaž wymiary			ary				
			deg			Tolerancj	cja			0			
			mm			Lista para	meti	rów		0			
	S	1	d12	ul	liczba_el	8,00	000000		Davas		_	5	
100		-	d13	deg	360 deg	360,			Parar	neury			
	jQ	1	d15	mm	promien_s	20,000000 C liczba_el		_el					
	-	Par	rametry użytkow						prom	ien_o ien s			
		D:\	VII WYKŁADY, ZA						sred	nica_w			
14-0	srednica_z mm 		mm	50 mm	50,0	00000	ō.	sredr	nica_z kosc				
			mm	30 mm	30,0	00000	TOL -		,			╤┹	
- <u>(</u>)			mm	10 mm	10.0	00000	$\overline{\mathbf{O}}$		10 000	000			

- Parametry modelu				
- d0	mm	srednica_z	50,000	(
- d1	mm	srednica_w	30,000	(
d2	mm	wysokosc	10,000	(
- d3	deg	0,0 deg	0,000000	(
d5	mm	promien_o	5,000000	(
d12	ul	liczba_el	8,000000	(
- d13	deg	360 deg	360,00	(
d15	mm	promien_s	20,000	(
				_

7. Korzystając z okna polecenia **Parametry** przypisz pozostałe parametry niezbędnym wymiarom wg poniższego rysunku

8. Przejdź do arkusza *Excel* i zmień parametry rysunku np.: zmień liczbę elementów szyku na 4 a promień otworu na 6 mm. Zapisz zmiany w arkuszu i wróć do *Inventora*. W górnym pasku kliknij ikonę **Aktualizuj**, obserwuj zmiany.

1 -	(∃ ← 	2	R -
PRO	Model 3D	Sprawdź	Narzę	dzia
			1	E

Pamiętaj, że zmiana parametrów i wymiarów rysunku musi być zgodna z istniejącymi relacjami geometrycznymi i wymiarowymi. Jakakolwiek zmiana niezgodna z tymi relacjami spowoduje błąd rysunku i program to zgłosi odpowiednim komunikatem.

Jeżeli ikona Aktualizuj nie jest aktywna musisz wrócić do arkuszu Excela i go zapisać.

Przykład B. Wariantowanie modelu Inventor z wykorzystaniem Microsoft Excel

1. Dla wykonanego wcześniej kolnierza wykonamy teraz wariantowanie modelu z wykorzystaniem programu *Excel.* W tym celu należy skorzystać z opcji programu *Inventor* karta **ZARZĄDZANIE**

> polecenie iPart *i*, która pozwala nam na stworzenie wewnętrznego arkusza informacji o tworzonym modelu, w tym również jego geometrii. Po uruchomieniu polecenia otwiera się okno jak na rysunku poniżej.

Redagov	vanie iPart													x
Parametry	Właściwości	Wyłączenie	iFeatures	iMate	Elementy konst	rukcyjne	Gwint	y Inny						
🜈 rys_pa	rametry.ipt							Nazwa						
📗 🖨 🗍 Wy	ciągnięcie pros	te 1					9.	srednica	7					
	srednica_w [3	0 mm]					0	srednica	w					
	srednica_z [5	0 mm]					0	wysokosc						
	wysokosc [10	mm]					0	promien_c)					
	d0 [srednica_	z]					9	promien_s	;					
x=	d1 [srednica_	w]					0	liczba_el						
x=	d2 [wysokosc]												
	d3 [0,0 deg]					>>								
📄 👩 Oti	vór 1													
x =	promien_o [6	mm]				<<								
x=	promien_s [10) mm]												
	d5 [promien_o	b]												
	d15 [promien]	_s]												
📗 🖶 😍 Szy	/k kołowy1													
···· x=	liczba_el [8 ul]	1												
x=	d12 [liczba_el]												
	d13 [360 deg	1												
📗 🦾 🛅 Inn	y													
	Member	Numer (zęści si	rednica_z	srednica_w	wysok	osc pr	omien_o	promien_s	liczba_	el			^
1 ry	s_parametry-0	1 rys_paran	etry-01 5	U mm	30 mm	10 mm	61	nm	10 mm	8 ul				-
	Dpcje	Spraw	dź									OK	Anuluj	

Zakładka **PARAMETRY** zawiera parametry określone przy tworzeniu części, takie jak elementy, wymiary, parametry ze zmienioną nazwą i parametry użytkownika. Lewy panel tej zakładki to drzewo operacji naszej części wraz z przypisanymi więzami wymiarowymi i przypisanymi do nich parametrami użytkownika. Prawy panel zakładki to lista parametrów użytkownika, które zostały stworzone w programie *Excel* i połączone z naszym modelem. Parametry modelu, które chcemy usunąć z naszego arkusza wybieramy w prawym oknie, następnie klikając znak << możemy je usunąć. Analogicznie, jeżeli chcemy dodać to wybieramy parametr w drzewie operacji i klikamy znak >>. Efekty tych działań widać w dolnej części zakładki, w której jest podgląd tworzonego arkusza danych *iPart*.

Element opisu modelu jest automatycznie tworzony, a jako pierwszą kolumna jest nazwa modelu. Domyślną wartością jest nazwa pliku, indeksowana według składnika, przykładowo śruba-01, śruba-02 itd. Kolejną kolumną jest nr części indeksowany analogicznie jak nazwa a kolejne to eksportowane przez nas parametry.

2. Zatwierdzając wybór wszystkich wprowadzonych przez nas parametrów w drzewie operacji naszego modelu pojawi się informacja o wygenerowaniu pliku *iPart* (1).

Klikając prawym przyciskiem na Tabela z menu kontekstowego wybieramy opcję *Edycja przez* arkusz kalkulacyjny. Nasz plik *iPart* zostanie otwarty w *Excelu*.

	А	В	С	D	E	F	G	н
1	Member <defaultrow>1</defaultrow> <filename></filename>	Part Number [Project]	srednica_z	srednica_w	wysokosc	promien_o	promien_s	liczba_el
2	rys_parametry-01	rys_parametry-01	50 mm	30 mm	10 mm	6 mm	20 mm	6 ul
3								
4								

3. Teraz możemy przystąpić do stworzenia wariantów naszego kolnierza, który może różnić się geometrią, grubością liczbą otworów itp. W tym celu należy skopiować **OSOBNO** pierwszą i drugą kolumn pliku tak, aby *Exel* automatycznie indeksował nam nowe pozycje pliku.

	А	В	С	D	E	F	G	н	
1	Member <defaultrow>1</defaultrow> <filename></filename>	Part Number [Project]	srednica_z	srednica_w	wysokosc	promien_o	promien_s	liczba_el	
2	rys_parametry-01	rys_parametry-01	50 mm	30 mm	10 mm	6 mm	20 mm	6 ul	
3	rys_parametry-02	rys_parametry-02	100 mm	60 mm	20 mm	10 mm	40 mm	8 ul	
4	rys_parametry-03	rys_parametry-03	150 mm	90 mm	30 mm	15 mm	60 mm	10 ul	
5			.						
6									

Pozostale wartości parametrów użytkownika uzupelniamy tak, aby stworzyć warianty kolnierza. Należy pamiętać o poprawnym zapisie wraz z niezbędnymi jednostkami.

4. Zapisując i zamykając plik *iPart* wracamy do *Inventora*, w drzewie operacji modelu powinny pojawić się nasze warianty kołnierza. Klikając dwa razy myszą na wariancie aktualizujemy model do zapisanych wcześniej wartości.

Przykład C. Rysowanie profilu na bazie punktów w programie Inventor

- W celu stworzenia np. profilu łopatki turbiny konieczne jest narysowanie profilu łopatki na bazie punktów obliczeniowych (współrzędne x, y). Jest to zadanie żmudne, jednak można ten proces przyśpieszyć. W tym celu musimy posiadać arkusz *Excel* ze współrzędnymi punktów profilu x, y. Współrzędne powinny być zapisane w dwóch kolumnach bez żadnych dodatkowych opisów kolumn itp.
- Na dowolnej płaszczyźnie rysunkowej tworzymy nowy szkic. Następnie wybieramy opcję Importowanie punktów i wskazujemy plik *Excela*. Jeżeli punkty zostaną poprawnie wczytane to na naszym szkicu pojawi się zespół punktów tworzących profil łopatki.

3. W kolejnym kroku łączymy punkty, możemy wykorzystać polecenie Linia (1) lub polecenie Splajn Interpolacja (2). W pierwszym przypadku profil jest trochę "kanciasty", natomiast w drugim należy profil narysować dzieląc go na splajn górny i dolny. Zabieg taki pozwoli uzyskać bardziej "gładki" profil lopatki. W przypadku obu metod można również wykonać zaokrąglenie kąta napływu i spływu.

4. W kolejnym kroku zamykamy szkic i przystępujemy do wykonania polecenia wyciągnięcia.

Innym rozwiązaniem łączenia punktów jest użycie przycisku *Opeje* polecenia **Importowanie punktów** i wybór łączenia punktów za pomocą linii lub splajnu. Należy wówczas zwrócić uwagę na kolejność punktów wprowadzonych do arkusza bo Inventor łączy kolejne punkty ze sobą.

Ćwiczenie 7 – Zadania do wykonania

Zadanie 1

Zaprojektować płytkę prostokątną z otworem umieszczonym na przekątnej prostokąta. Stosując plik Excel oraz parametry programu zapewnić możliwość zmiany

- wymiarów płytki (Długosc, Szerokosc, Wysokosc) wartość początkowa 50, 30, 5
- średnicy otworu (*Srednica*) wartość początkowa 5
- Położenie otworu względem środka płytki (Odleg) wartość początkowa 10

Zadanie 2

Zaprojektować płytkę z wycięciami w kształcie jak na rysunku. Wymiary dowolne

Stosując plik Excel oraz parametry programu zapewnić możliwość zmiany:

- wymiarów płytki (Dlugosc, Szerokosc, Wysokosc)
- ilości otworów (Wiersze, Kolumny)
- ich wymiarów (DD, LL)
- odległości od krawędzi z zachowaniem równej odległości brzegów otworów od brzegów płytki (AA).

Wskazówka

Wykonać płytkę bez wycięć. W kolejnym kroku wykonać wycięcie w lewym górnym rogu płytki zachowując odpowiednie odległości od krawędzi. Wycięcie powielić szykiem z podaniem ilości elementów i np. odległości między nimi. W kierunku poziomym odległość ta wynosi (*Długosc*-2*AA-LL)/(*Kolumny* -1)

Wprowadzić kontrolę przez formulę sprawdzenia poprawności wprowadzanych danych – np. warunek, że suma długości otworów (*Kolumny* * *LL*) nie jest większa niż długość płytki (*Długosi*)

Zadanie 3

Korzystając z części *iPart* zaprojektować śrubę z łbem kulistym, gwintowaną na zadanej długości trzonu. Przygotować warianty śruby zgodnie z poniższym zestawieniem.

W czasie rysowania elementu zwrócić uwagę na miejsce wykonywania szkiców do utworzenia odpowiednich fragmentów śruby. Tzn. trzpień śruby ze zmianą wartości *DL* powinien wydłużać się w prawą stronę a miejsce styku lba z trzpieniem powinno pozostać nieruchome. Gwint o długości *DGW* powinien być utworzony na prawym końcu trzpienia.

Zadanie 4

Zaprojektować uchwyt (jako *iPart*) z możliwością zmiany promienia Pr z 15 na 20 i wysokości HP 10, 12 i 15

Zadanie 5

Zaprojektować stopień turbiny parowej składający się z 50 lopatek o długości H = 400 mm. Średnica walu D = 1000 mm.

• Profil łopatki stworzyć na podstawie pliku Excela – utworzyć plik na podstawie danych:

- Wczytać punkty do szkicu.
- Na bazie wczytanych punktów utworzyć dwa splajny odpowiadające górnej i dolnej powierzchni łopatki.
- Utworzony profil wyciągnąć na długość 900 mm (D/2 + H) tworząc łopatkę
- W płaszczyźnie prostopadłej do profilu lopatki utworzyć szkic zarysu wału i wyciągnąć go niesymetrycznie na długości minimum 150 i 50 mm.
- Powielić łopatkę do ilości 50 szt.

Można również zmodyfikować kolejność danych w arkuszu (tak aby były w kolejności rysowania kolejnych segmentów splajnu) i wstawić punkty ze zmianą opcji **Importowania punktów** na **Utwórz splajn**.